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ABSTRACT

AUDIO SOURCE SEPARATION WITH CONVOLUTIVELY

MIXED SIGNALS

In this thesis, we addressed the problem of audio source separation of convo-

lutively mixed signals using microphone arrays. Independent Component Analysis

is a major statistical tool for solving this problem. In real room environments, the

recordings of audio signals usually involve the signal itself as well as some delayed and

amplitude modulated versions of this signal. This is due to reverberation or echo of

the room which occurs as a result of reflection of walls, ceiling, ground as well as the

furniture inside. Separation of signals that are mixed in these kinds of environments

is a challenging problem. There exist both time-domain and frequency-domain solu-

tions to this problem. We mostly focus on frequency domain methods where ICA is

performed separately in each frequency bin. Permutation ambiguity which is the basic

problem in frequency domain ICA, is also handled with two basic approaches which

are, direction of arrival method which is motivated by conventional beamforming the-

ory and interfrequency correlations which is motivated by nonstationarity of speech

signals. Conventional and Adaptive Beamforming methods are also implemented here.

These methods separate sources by exploiting the physics of the propagation.
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ÖZET

BÜYÜK HARFLERLE TEZİN TÜRKÇE ADI

Bu tezde, evrişimli bir şekilde karışmış ses kaynaklarının mikrofon dizileri kul-

lanılarak ayrıştırılması problemini ele aldık. Bağımsız Bileşen Analizi (BBA) bu prob-

lemin çözümündeki başlıca istatistiksel yöntemdir. Gerçek oda koşullarında ses sinyal-

lerinin kayıtları genellikle sinyalin kendisini içerdiği gibi, aynı zamanda bu sinyalin

gecikmiş ve genliği modüle edilmiş hallerini de içerir. Bu durum, odanın duvar, tavan ve

tabanından ve odanın içindeki eşyalardan yansıyan yankılanmalardan kaynaklanır. Bu

tür ortamlardaki karışmış sinyallerin ayrımı oldukça zor bir problemdir. Bu probleme

hem zaman düzleminde hem de frekans düzleminde çözümler mevcuttur. Biz bu tezde

çoğunlukla BBA’nin her frekans bandında ayrı ayrı kullanıldığı frekans düzlemindeki

çözümlere odaklandık. Frekans düzleminde BBA’nde karşılaşılan en temel problem olan

permütasyon belirsizliğini iki temel yaklaşımla ele aldık: Klasik hüzmeleme teorisinin

bir sonucu olarak ortaya çıkan Varış Yönü yöntemi ve durağan olmayan konuşma

sinyallerinden ortaya çıkan Frekanslararası Bağıntı yöntemi. Klasik ve Uyarlanabilir

Hüzmeleme yöntemleri de bu tezde uygulanmıştır. Bu yöntemler yayılım fiziğinden

yararlanarak ses kaynaklarını ayırırlar.
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1. INTRODUCTION

Blind signal separation (BSS) is an emerging technique of multichannel signal

processing and data analysis. The ”blind” here means that the mixed components are

latent or unobservable, actually only the mixed signals are observable. Assume that

you are in a room with lots of people talking simultaneously and you are trying to focus

on one of the speakers. This is known as ”cocktail party” problem. BSS is motivated

by the cocktail party problem in the sense that you are trying to separate one of the

sources from others. In practice audio signals recorded with a microphone array are

used for BSS. Independent Component Analysis (ICA) which is a linear transformation

method, uses statistical independence of the sources to separate them. Nongaussianity

of sources is used as a measure of independence in ICA methods. Beamforming is

another approach that uses the spatial locations of sources in the physical world, to

separate them [15],[14].

Audio Source separation is a BSS problem where the unobserved sources are

acoustic signals such as speech and the unobserved mixing system the impulse re-

sponses of microphones in a room. In real room environments, the recordings of audio

signals not only involve the signal itself but also some delayed and amplitude modu-

lated versions of this signal. This is due to reverberation or echo of the room which

occurs as a result of reflection of walls, ceiling, ground as well as the furniture inside.

This is called convolutive mixing model which is challenging problem. In this thesis,

we concentrated on the frequency-domain ICA methods in order to solve problem of

separation of convolutively mixed audio sources [7],[8],[9],[10],[11],[12],[13].

There are several researches based on audio source separation and ICA models.

The basic ICA model where the signals are instantaneously mixed which means there

is no reverberation is described in [1],[2], [3] and [4].

Methods developed for solutions of basic ICA model can be categorized as gra-

dient methods and fixed point algorithms. A fast fixed point algorithm (FastICA) is



2

developed in [1],[18]. The FastICA algorithm is modified in [19] for the complex valued

signals, which is usually the case for the frequency domain ICA. There are several

gradient type algorithms which uses different types of nongaussianity measures and

combinations of them. Natural gradient is one of the important approaches among

gradient methods that is developed by Amari in [1] and [20]. A method that uses

information maximization approach [21] and natural gradient is developed in [9]. Max-

imum Likelihood with infomax principle is used in [22]. Nongaussianity measures are

defined in [1],[2],[3] and [21].

For the convolutive source separation problem which is much more complicated

than instantaneous mixing, both time domain and frequency domain solutions exist.

Although the details of time domain methods can be found in section 2.6.1, it is

convenient to highlight some important approaches for time domain here. There are

three types of approaches in time domain

• Nonwhiteness approach

• Nonstationary approach

• Nongaussianity approach

In [12] and [13] a broadband algorithm is developed based on nonwhiteness and non-

stationarity of signals. In [11], they also add the nongaussianity property in order to

use the higher order statistics in their approach.

In the frequency domain ICA, the separation is done at each frequency bin sepa-

rately which leads to the problems of permutation and scaling which are the inherited

ambiguities of ICA. Actually the permutation ambiguity is the difficult problem so that

researchers usually focus on that subject. For scaling ambiguity there are 2 robust so-

lutions in [7] and [9].

For solving permutation ambiguity, there are two basic ways, beamforming and

interfrequency correlations. Beamforming which is also called Direction of Arrival

method is an array processing technique which is used to localize the spatial position
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of the sources. Beamforming theory is explained in [15] and [14]. DOA arrival approach

is discussed in [9] and [10].

A method which is using interfrequency correlations based on temporal struc-

ture of speech signals, is developed in [7]. Permutation alignment with neighboring

correlations is another method which is discussed in [8].

In [9], a new robust algorithm is developed by using a hybrid algorithm of DOA

approach and correlations approach.

Audio source separation is one of the basic applications of independent compo-

nent analysis which is the main subject of this thesis. Since the noise outside can be

considered as an independent component, ICA algorithm can be used to reduce noise

or increase SNR, thus can be used for speech enhancement.

In noisy environments, the performance of speech recognition algorithms becomes

extremely low. Audio source separation with ICA can also be used for increasing the

performance of speech recognition algorithms especially in noisy environments.

ICA is actually developed for dealing with the problems that are closely related

to cocktail party problem, but as the interest increased on that subject, new areas

discovered that ICA can be used.

ICA algorithms are currently in use for electroencephalographic (EEG) and mag-

netoencephalographic (MEG) data to separate certain source signals that are artifacts

or noise sources not corresponding to brain activity. Another important application

area of ICA is feature extraction which is used in data compression and pattern recog-

nition. ICA is also used for data analysis in areas as economics, psychology or social

sciences.

In this thesis, we first give the theoretical background of ICA. The definition,

mixing models, time and frequency methods, ambiguities and the optimization algo-
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rithms are described in this chapter 2. Next chapter the theoretical information on

beamforming theory is given involving the conventional and adaptive approaches and

the limitations. After that the methodology is discussed in chapter 4. The overlap-

add algorithm, FastICA and the methods for solving permutation problem which are

DOA approach and correlations approach are given in detail. Then the results of the

implemented algorithms are given in chapter 5. In the last chapter, the results are

interpreted and some conclusions with thoughts for further research.
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2. INDEPENDENT COMPONENT ANALYSIS (ICA)

Several algorithms and methods have been developed to find a suitable linear

transformation of multivariate data. Principal Component analysis [1], projection pur-

suit [24] and [25], factor analysis [23] are some examples of these kind of algorithms.

What they all have in common is, these methods define their principle that tells which

transformation is optimal according to an optimization criterion. Independent Com-

ponent Analysis is an emerging method that also searches for a linear transformation

of multivariate data.

2.1. Definition

Assume that we observe n linear mixtures x1, ..., xn of n independent components

xj = aj1s1 + aj2s2 + ... + ajnsn for all j (2.1)

We assume that each mixture xj as well as each independent component sk is a random

variable. It is also assumed that both the mixture variables and the independent

components have zero mean which may not be the case for some situations.

x = [x1, x2, ..., xn]T (2.2)

s = [s1, s2, ..., sn]T (2.3)

A = (a1, a2, ..., an) =




a11 a12 . . . a1n

a21
. . .

...
...

an1 . . . ann




(2.4)

where x is the random vector whose elements are the mixtures (x1, x2, ..., xn), s is the

random vector whose elements are the (s1, s2, ..., sn), ai is a column vector with elements

(ai1, ai2, ..., ain) and A is the mixing matrix consists of these vectors (a1, a2, ..., an).
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With these definitions ICA model is defined as,

x = As =
n∑

i=1

aisi (2.5)

In this model, the independent components are latent variables, which means that they

are not observable. The mixing matrix A is also unknown. The random vector x is the

only observable data in this model, the mixing matrix A and independent components

have to be estimated by using this observable data.

The basic assumption of this model is the components si are statistically inde-

pendent and ICA is a statistical tool to find a linear transformation ,W, so that the

estimated components ŝi, are as independent as possible, in the sense of maximizing

some function that measures independence,

ICA uses gaussianity as a measure of independence which is motivated by Central

Limit Theorem [1]. Basically central limit theorem states that the distribution of a

sum of independent random variables tends toward a gaussian distribution, which can

be summarized as, sum of two random variables, not necessarily identically distributed,

has a distribution that is more gaussian than any of the original random variables.

By using this motivation, ICA finds a linear transformation that makes the

estimated components ŝi as non-gaussian as possible. And maximization of non-

gaussianity leads to independence.

ŝ = A−1x = Wx =




w11 w12

w21 w22







x1

x2


 (2.6)

ICA method can be expressed in two parts

• Non-gaussianity measure cost function which determines the statistical properties

like robustness or consistency of ICA method
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• Optimization algorithm which determines the algorithmic properties like conver-

gence speed or stability

2.2. Non-gaussianity Measures

2.2.1. Kurtosis

Kurtosis is the name of the fourth order cumulant of a random variable. Kurtosis

of x, denoted by kurt(x) is defined as,

kurt(x) = E{x4} − 3
[
E{x2}

]2
(2.7)

where E{.} is the expectation operator and x is a zero mean random variable. If

x is normalized so that it has unit variance, E{x2} = 1, then the kurtosis becomes

E{x4} − 3 which is simply a version of 4’th order moment. For a zero mean gaussian

random variable, the fourth order moment equals to 3 [E{x2}]2, therefore the kurtosis

of a gaussian random variable is zero.

Subgaussian random variables, which have flat pdf like uniform distribution, have

negative kurtosis. On the other hand, supergaussian random variables, which have

sharp pdf with heavy tails like laplacian distribution, have positive kurtosis. That’s

why the absolute value or the square of kurtosis is used in algorithms as a measure of

non-gaussianity.

However kurtosis has some drawbacks as a measure of non-gaussianity that it is

very sensitive to outliers in measurements. Since it is using 4th order moment, a single

measurement error may mislead the calculation.
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2.2.2. Negentropy

Negentropy is based on the information-theoretic quantity of differential entropy.

The differential entropy H of a random vector y with pdf f(y) is,

H(y) = −
∫

f(y) log f(y)dy (2.8)

Entropy is the basic concept of information theory. Entropy of a random variable is

the information you get by observing that random variable. Briefly it states that, the

more unpredictable or random the variable is, the larger its entropy. And a gaussian

random variable has the largest entropy among random variable with same variance

[1].

Negentropy is a normalized version of differential entropy which is zero for gaus-

sian random variable and positive for non-gaussian. Negentropy J is defined as,

J(y) = H(ygauss)−H(y) (2.9)

where ygauss is a gaussian random variable.

Negentropy is a statistically well justified and robust estimator of non-gaussianity

but the computation is very difficult since it requires to estimate the pdf.

2.2.2.1. Approximations of Negentropy. There are several approximations for negen-

tropy, the classical method is using higher-order moments [1], [5],

J(y) ≈ 1

12
E{y3}2 +

1

48
kurt(y)2 (2.10)

However this approximation turns into maximization of kurtosis when the pdf of y is

symmetric which is the case most of the time. So it is not robust against outliers.
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For this reason, a more robust approximation of negentropy is developed in [6]

which is based on maximum-entropy principle,

J(y) ≈
p∑

i=1

ki [E{Gi(y)} − E{Gi(ν)}]2 (2.11)

where ki are positive constants, ν is zero mean, unit variance gaussian variable and

the functions Gi are non-quadratic functions [6]. If only one non-quadratic function is

used,

J(y) ∝ [E{G(y)} − E{G(ν)}]2 (2.12)

When the pdf of y is symmetric, this approximation becomes a generalization of (2.10).

When the non-quadratic function is chosen as G(y) = y4, then this becomes a kurtosis

based approximation as in (2.10).

2.2.3. Minimization of Mutual Information

Mutual information is natural measure of independence between random vari-

ables. It is equivalent to Kullback-Liebler divergence between the joint density f(y)

and the product of its marginal densities. Using the concept of differential entropy, the

mutual information I between m random variables yi, i = 1, ..., m is defined as,

I(y1, y2, ..., ym) =
m∑

i=1

H(yi)−H(y) (2.13)

So from (2.13) it can be seen that mutual information is always non-negative and zero

if and only if the variables are statistically independent.

For a linear transformation y = Wx,

H(y) = H(x) + log |detW| from [1] (2.14)
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From (2.13) and (2.14) we have,

I(y1, y2, ..., ym) =
m∑

i=1

H(yi)−H(x)− log |detW| (2.15)

When yi is constrained to be uncorrelated and of unit variance, the mutual information

becomes,

I(y1, y2, ..., ym) = C −∑

i

J(yi) (2.16)

As it is seen from the (2.16), there is a fundamental relation between negentropy

and mutual information that is minimization of mutual information is equivalent to

maximization of negentropy.

2.2.4. Maximum Likelihood Estimation

The log likelihood L as a function of W = (w1,w2, ...,wN)T is defined as,

L(W) =
M∑

k=1

N∑

i=1

log fi(w
T
i x(k)) + M log |detW| (2.17)

where fi are the density functions of source signals, M and N are the number of sensors

and number of sources respectively.

When the expectation of (2.17) is taken,

1

M
E{L(W)} =

N∑

i=1

E{log fi(w
T
i x)}+ log |detW| (2.18)

If the fi are equal to the actual distributions wT
i x,then the first term in the (2.18)

would be equal to −∑
i H(wT

i x), so likelihood approach would be equal to negative

mutual information up to an additive constant.

The difficult part of the maximum likelihood is the estimation of the densities fi.
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The estimation of the densities is a difficult task because in practice we don’t know the

independent components. Actually these densities need not to be estimated precisely,

it is enough to estimate whether they are subgaussian or supergaussian [1].

2.3. Ambiguities of ICA

There are some indeterminacies or ambiguities of ICA method,

• Scaling Ambiguity is that we can not determine the energies of the independent

components. Scaling the estimated independent components by some constants

don’t change their independence measure. Assume that W = A−1 which is

the exact inverse transformation and Ŵ is some scaled version of W. This is

illustrated in (2.19) for 2× 2 case which is modified version of (2.5),




c1ŝ1

c2ŝ2


 = Ŵx =




c1w11 c1w12

c2w21 c2w22







x1

x2


 (2.19)

Since multiplying a random variable do not change the type of pdf, the indepen-

dence criteria between s1 and s2 is unchanged

f(c1ŝ1, c2ŝ2) = f(c1ŝ1)f(c2ŝ2) (2.20)

Intuitively we can say that multiplying a random variable t1 with a constant c,

does not give more information about another random variable t2 which is inde-

pendent from t1.

• Permutation Ambiguity is that we can not determine the order of the inde-

pendent components. Assume that we change the order of the rows of demixing

matrix W in (2.6) where it is exactly equal to the inverse of mixing matrix,

Ŵ =




w21 w22

w11 w12


 (2.21)
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then, the resulting estimates become,

ŝ =




ŝ2

ŝ1


 = Ŵx =




w21 w22

w11 w12







x1

x2


 (2.22)

This means that the demixing matrix Ŵ leads to exactly same independent com-

ponents but in different order. Since the independence between source estimates

do not change, there is no possible way for ICA to distinguish these solutions.

As a result, the demixing matrix W, can be estimated up to a scaling and a

permutation which can be illustrated as,

H W = Λ P (2.23)

where Λ is a diagonal scaling matrix and P is a permutation matrix.

2.4. Preprocessing Steps

There are two important preprocessing techniques for ICA which are centering

and whitening.

2.4.1. Centering

We usually assume that both the mixtures and independent components have zero

mean which simplifies the algorithm. If this assumption is not true for the mixture

variables, they can always be made zero mean by centering which is simply subtracting

their mean,

x′ = x− E{x} (2.24)
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When the mixtures are centered, the estimated components also have zero mean which

is shown in (2.25)

E{ŝ} = A−1E{x′} (2.25)

The subtracted mean can be recovered by adding (2.26) to the independent compo-

nents.

m = A−1E{x} (2.26)

2.4.2. Whitening

The whiteness of a random vector means that the components of that vector are

uncorrelated and have unit variance. Uncorrelatedness which can be shown as,

cov(y1, y2) = E{y1y2} − E{y1}E{y2} (2.27)

is a weaker form of independence that is if two random variables are independent then

they are also uncorrelated but uncorrelatedness of two random variable does not imply

independence.

Whitening(sphering) is a linear transformation that makes the components of

random vector white,

z = Vx (2.28)

where V is the whitening transformation. Eigenvalue decomposition (EVD) of the

covariance matrix is a basic method to obtain whitening transformation.

E{xxT} = EDET (2.29)
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where E is the matrix of eigenvectors and D is the diagonal matrix with the eigenvalues

in the main diagonal. The whitening transformation matrix is,

V = ED−1/2ET (2.30)

When you whiten the observed mixtures, according to the model in (2.5) the new

mixing matrix becomes Ã = VA which is orthogonal that is shown,

E{zzT} = ÃE{ssT}ÃT = ÃÃT = I (2.31)

As a result of the new mixing matrix being orthogonal, whitening transformation re-

stricts our search for demixing matrices into the space of orthogonal matrices which

makes whitening a powerful preprocessing step.

2.5. Optimization Algorithms

2.5.1. Gradient Methods

Gradient type optimization algorithms usually have the form of minimizing a

cost function J(W) with respect to a parameter matrix W. Gradient Descent is one

of the classical approaches of unconstraint optimization problems. In this method, the

gradient of J(W) is computed at some initial point and by moving in the direction of

negative gradient with distance, the function J(W) is minimized.

The advantage of gradient methods is that they enable fast adaptation in a non-

stationary environments. But depending on the choice of the learning rate, the con-

vergence may be too slow or it may totally prevent convergence. Fixed-point iteration

algorithms are alternatives to make the learning faster and reliable.
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2.5.2. FastICA

FastICA is based on a fixed-point iteration scheme for finding a direction, a unit

vector w such that the projection on that direction wTx maximizes the nongaussianity.

Nongaussianity can be measured by kurtosis, negentropy or any of the nongaussianity

measures. We used the approximation of negentropy J(wTx) given in (2.12) which is

developed in [3].

The basic form of FastICA for one unit is,

1. Choose an initial weight vector w, which can be chosen as random.

2. The learning algorithm is

w+ = E{xg(wTx)} − E{g′(wTx)}w (2.32)

where g and g′ are the first and second derivatives of a nonlinear function G

respectively.

3. Normalize the weight vector

w = w+/‖w+‖ (2.33)

4. Apply from 2 until convergence

The convergence means that the updated weight vector w+ is in the same direc-

tion of old weight vector w, which can be checked by dot product.

To estimate several independent components, the one-unit FastICA has to be

used for several units with weight vectors, w1, ...,wn.

The outputs w1x, ...,wnx should be decorrelated in order to prevent these weight

vectors from converging the same maxima. Either Deflationary decorrelation algorithm

or Symmetric decorrelation algorithm could be used for this purpose.
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Deflationary Orthogonalization is a Gram-Schmidt type decorrelation which means the

independent components are estimated one by one.

wp+1 = wp+1 −
p∑

j=1

wjw
H
j wp+1 (2.34)

wp+1 =
wp+1

‖wp+1‖ (2.35)

Symmetric Orthogonalization is method to decorrelate all vectors in one step,

W = W(WHW)−1/2 (2.36)

where W = (w1...wn) is the matrix of vectors.

Deflationary decorrelation has an advantage through symmetric decorrelation

that it decorrelates from the most non-gaussian to least non-gaussian which is often

means from most important to least important.

There are some advantages of FastICA algorithm among other algorithms,

• The convergence is cubic where as the convergence of gradient descent algorithms

are linear [3]

• There is no step size parameter to choose

• There is no estimation of pdf of sources, use a nonlinearity to find non-gaussian

sources.

2.6. Convolutive Mixing Model

Assume that a source signal is recorded in a real room environment, in that

case basic ICA model (2.5) does not hold because of the reverberation of the room.

The source signal propagates directly to the sensor as well as by reflecting through

walls,ceiling or ground propagates through different paths and reach to the sensor in

different angles. So the observed signal consists of an unknown source signal mixed
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with itself at different time delays and amplitudes. This can be defined by convolutive

mixing in which source signals are convolved with impulse responses of the sensor,

x(t) = H(t) ∗ s(t), (2.37)

where H(t) =




h11(t) h12(t) · · · h1n(t)

h21(t)
. . .

...
...

hn1(t) · · · hnn(t)




a more specific definition,

xp(n) =
P∑

q=1

M−1∑

κ=0

hpq(κ)sq(n− κ) (2.38)

where hqp(κ) is the impulse response of the q’th source signal in the p’th sensor. Figure

2.1 shows the linear MIMO system for convolutive ICA.

Figure 2.1. Linear MIMO system for ICA

The aim of ICA in this kind of mixing is to find a demixing filter, wpq(κ), that

makes estimated components as independent as possible.

There are two kinds of algorithms for this problem, time domain methods and
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frequency domain methods.

2.6.1. Time-Domain Methods

There are three types of approaches for blind source separation problem in time

domain,

• Nonwhiteness approach by simultaneous diagonalization of output correlation

matrices over multiple time-lags.

• Nonstationarity approach by simultaneous diagonalization of short-time output

correlation matrices at different time-lags

• Nongaussianity approach using higher order statistics for ICA

The first two properties are usually based on second order statistics (SOS), higher order

statistics is used to exploit nongaussianity.

There are two algorithms Generic SOS and Generic HOS (TRINICON) developed

in [12] and [11]. The former one uses second order statistics, the whiteness and nonsta-

tionarity properties and the latter one combine all three fundemental approaches for

convolutive mixture.

For Generic SOS algorithm a cost function that contains correlation matrices that

include several time-lags is used under the assumption of nonstatinarity. For Generic

HOS algorithm the cost function is updated so that it includes higher order statistics.

For estimation of nongaussianity, the minimization of mutual information is used. And

the optimization algorithm is used as natural gradient which is developed by Amari

[20].



19

2.6.2. Frequency Domain Methods

When the observed mixture signals transformed into fourier domain, which is

shown for 2× 2 case,

F{x1} = F{h11 ∗ s1 + h12 ∗ s2} = X1(f) = h11(f)s1(f) + h12(f)s2(f) (2.39)

F{x2} = F{h21 ∗ s1 + h22 ∗ s2} = X2(f) = h21(f)s1(f) + h22(f)s2(f) (2.40)

According to (2.39) and (2.40) it can be seen that, the signals are instantaneously

mixed at each frequency bin. This property makes working in frequency domain very

advantageous because the robust techniques that are developed for instantaneous mix-

ing problem, can be used for this problem.

In frequency domain methods, due to non-stationary of the speech signals, they

are segmented into smaller blocks that are assumed to be stationary, by moving win-

dows. This segmentation is done by using overlap-add method which is explained in

section 4.1.

After segmenting the audio signal into simple blocks by windowing, DFT of these

blocks are taken with zero padding in order to prevent wrap-around effects. This is

called Short Time Fourier Transform (STFT). STFT is used when you are not only

interested in the frequency content of a signal but also the time information that

frequency content is needed.

STFT

x̂(f, ts) =
∑

t

e−j2πftx(t)win(t− ts), ts = 0, ∆T, 2∆T, ... (2.41)

where N is the number of points in discrete fourier transform, ts is the window position.

x̂(f, ts) has both time and frequency information of the signal x(t) which consists of

row mixture vectors (x1(t), ..,xn(t)).
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Since the ICA algorithm is applied to each frequency bin separately, the time

information of x̂(f, ts) is used for a fixed frequency f0, that is the data to be solved to

find independent components is,

For f = f0,

x̂(f0, ts) = x̂(ts) =




x̂1(ts)
...

x̂n(ts)




=




x̂1(1) x̂1(2) · · · x̂1(Ts)

x̂2(1)
. . .

...
...

x̂n(1) · · · x̂n(Ts)




(2.42)

where Ts is the number of windows.

Briefly we can say that, the source signals are mixed with different mixing ma-

trices at each frequency bin, that’s why ICA is applied separately at each frequency

bin. But this brings up a new problem with it which are the scaling and permutation

ambiguities of ICA.

In basic ICA problem (2.5), the scaling or permutation problem generally does

not affect the performance of the algorithm. the independent components could be

normalized to cover scaling problem and the order of the independent components is

usually not important as long as they are separated.

But in convolutive ICA, these ambiguities become important. Since ICA is ap-

plied at each frequency separately, the independent components at each frequency

would be scaled and permuted in a random order. It is a challenging work to find the

right permutation so that the separated frequency components belong to same source

signal. Even when the right permutation is found, each frequency component is scaled

with different parameters which causes distortion in the output. The methods for solv-

ing scaling and permutation problems in frequency domain are given in sections (4.3)

and (4.4), respectively.
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3. BEAMFORMING

”Beamforming” is a general signal processing technique used to control the direc-

tionality of the reception or transmission of a signal on a transducer array. A receiving

type beamformer performs spatial filtering to separate signals that have overlapping

frequency content but originate from different spatial locations.

Beamforming applies sampling spatially and takes the advantage of the fact that

the distance from the source to each microphone in the array is different, which means

that the signal recorded by each microphone will be phase-shifted replicas of each other.

Both time domain and frequency domain approaches exist for beamforming. In

time domain beamforming, the spatial filter passes waves propagating from a narrow

range of directions or locations by delaying and summing the sensor signals. Frequency

domain beamforming implements the calculations entirely in the frequency domain by

Fourier Transforming the inputs. The spatiotemporal filter applied and the results are

inverse transformed into the time domain. Delay means linear phase shift in frequency

domain.

In both approaches the basic assumptions that are used in calculations are,

• The source signals are far enough from the sensor array so that the waves are

planar when they reach to the sensor array.

• Direction of propagation of the wave is approximately equal at each sensor.

Beamformers can be classified in two types, data independent(nonadaptive) and

statistically optimum(adaptive) according to the choice of weights.
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3.1. Conventional Beamforming

Conventional Beamforming is one the data independent methods in beamforming

theory. Data independent means that the beamformer weights are designed so that they

don’t depend on the statistical behaviour of the source signals. Since we are considering

the frequency domain beamforming, the beamforming coefficients are calculated for

each frequency bin separately.

In conventional beamforming the beamformer coefficients which is a weight vec-

tor, w, are chosen as,

w(f, θ) = [1 ej2πfτ2(θ) ej2πfτ3(θ) ... ej2πfτN (θ)]H (3.1)

τi = (i− 1)(d/c) sin θ for i = 1, ..., N

where d is the sensor spacing, c is the propagation velocity, θ is the arrival angle which

is perpendicular to the sensor array.

Actually each of the elements of weight vector ,w, represents the phase shift

which is a time delay in time domain, between consecutive sensors with spacing d. It

is represented in figure 3.1,

Figure 3.1. The delay between consecutive sensors
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As it is seen from the figure 3.1, the actual delay τfull between consecutive sensors

is calculated as,

τfull = (d/c) sin θ (3.2)

3.2. Adaptive Beamfoming

Adaptive beamforming means that the weights are chosen based on the statistics

of the data received at the sensors. There are several methods for adaptive beamforming

such as Multiple Sidelobe Cancellor, Maximization of Signal to Noise Ratio or Linearly

Constrained Minimum Variance Beamforming (LCMV) [14].

The basic idea of LCMV beamforming is to constrain the response of the beam-

former so signals from the direction of interest are passed with a specified gain and

phase. The weights are chosen to minimize the output power which preserves the de-

sired signal while minimizing contributions to the output due to interfering signals and

noise arriving from directions other than the direction of interest.

The response of a beamformer at angle θ and at frequency f is,

r(f) = wHd(θ, f) (3.3)

where d(θ, f) = (1, ej2πfτ2(θ), ..., ej2πfτN (θ))H . By linearly constraining the weights to

satisfy the response r(f) = g, where g is complex number, any signal from angle θ

and with frequency f has an output response of g. For the special case where g = 1,

the gain is unity and the phase is zero. this special case is called Minimum variance

distortionless response (MVDR). This algorithm is used in our experiments.

Interference of jammer signal with desired signal is optimally reduced by mini-
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mizing the expected value of the output power which is,

E{|y2|} = wHRxw where Rx = E{xxH} (3.4)

So the MVDR problem can be described as,

argminw(wHRxw) subject to wHd(θ, f) = 1 (3.5)

This minimization problem can be solved with Lagrange Multipliers [14], which results

in,

w =
Rx

−1d(θ, f)

d(θ, f)HRx
−1d(θ, f)

(3.6)

where w is the beamforming vector.

We used diagonal loading in order to ensure that the Rx to be invertible.

3.3. Limitations of Beamforming

A beamformer’s resolution represents its capability to measure the source’s loca-

tion or its direction accurately so limited resolution means limited ability to determine

a plane wave’s direction of propagation. Two important kinds of limitations of beam-

forming are spatial aliasing and angular resolution.

3.3.1. Spatial Aliasing

As we mentioned before, beamforming is sampling the waves in space with array

of sensors. The sampling interval is the sensor spacing d. According to Nyquist criteria

in the sampling theorem, there should be at least two samples taken from one period

of the signal. That means the sampling interval should be smaller than the half of the

wave length.
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This criteria also stands for spatial sampling [15]. The sensor spacing should be

smaller than the half of the wave length of a monochromatic wave with frequency fo,

which can be expressed as,

λo =
c

fo

,

d <
λo

2
(3.7)

where c is the propagation velocity and λo is the wave length. Intuitively this inequality

means that the plane wave have to reach consecutive sensors in at most half period

time and beyond that range spatial aliasing occurs.

3.3.2. Angular Resolution

The angular resolution means that beamforming methods can calculate the angle

of arrival of the planar waves in a certain range. This range is defined in [15] for equally

spaced M sensors with spacing d as,

PW =
4
√

3

k0d cos θ
√

M2 − 1
, where k0 =

2πf

c
(3.8)

where PW stands for parabolic width which is the main lobe width of the frequency

response of the array pattern, k0 is the wave number [15], c is the speed of propagation

of sound and θ is the angle of interest.

Angular resolution is very important when we are trying to separate more than

one plane waves propagating in slightly different directions. From (3.8) it can be seen

that, the angular resolution depends on the frequency or wavelength of the signal, the

angle of arrival, sensor spacing and number of sensors. Because angular resolution is

inversely proportional to the frequency, at low frequencies the range of estimation of

arrival angle is pretty higher. That’s why in low frequencies beamforming usually fails

to separate sources from different locations. In order to minimize the angular resolution

either sensor spacing can be decreased which limits the range of frequencies for spatial
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aliasing, or the number of sensors can be increased.
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4. METHODOLOGY

In our method, the frequency domain ICA is used to separate convolutively mixed

signals. The block diagram is shown in figure 4.1. As shown in the figure there are 4

basic steps in the algorithm. In the first step, due to non-stationarity of speech signals

over long periods of time, the audio mixture is segmented into smaller blocks which

are about 25 ms for which the block assumed to be stationary. This segmentation is

applied by using overlap-add method which is a strong tool in speech applications due

to its easiness and computational efficiency.

Figure 4.1. Block Diagram of Frequency Domain ICA

4.1. Overlap Add Method

The overlap-add method could be summarized in three steps, decompose the

signal into simple components, process each of the components in some useful way, and

recombine the processed components into the final signal [17]. This processing would be

FFT convolution, filtering in frequency domain etc. In our case this process is finding

a linear transformation to obtain independent components in frequency domain.

Windowing functions such as Hanning or Hamming windows, are used in segmen-

tation in order to minimize distortion in frequency domain. We used Hanning window

with a length of 25 ms [17]. One of the important properties of Hanning window is with
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half overlap size, it leads perfect reconstruction. The formula of an M point Hanning

window is given by,

win(n) =
1

2
(1− cos

2πn

M− 1
) where 0 ≤ n ≤ M− 1 (4.1)

Figure 4.2 illustrates the overlapping Hanning window with a length of 400 sam-

ples. The overlap is half length.
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Figure 4.2. Overlapping Hanning window with length=400 samples

There are a lot of versions of Overlap-Add Method [17]. In the one we use,

we simply multiply the windowing function(Hanning window) with a block of audio

mixture by overlapping windows with a skip rate of 12.5 ms. The time information of

the blocks are recorded because they are used in the synthesizing part.

x̂(ts) =
∑

t

x(t)win(t− ts), ts = 0, ∆T, 2∆T, ... (4.2)

After some processing is done over these blocks they are synthesized into a final signal.

In our case, we are taking IFFT of these processed signals to transform them into time

domain.
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Since the time information of the blocks are known from the segmentation step,

the resulting blocks are placed according to that information. Since the segmented

blocks are overlapping, the resulting blocks also overlap. The overlapping parts of the

blocks are added to form the final signal.

After the signals are segmented into blocks and transformed into frequency do-

main, the data which consists of the time information of each frequency band, is pro-

cessed in order to have independent components. This separation is done using FastICA

algorithm which is modified for complex data.

4.2. Complex FastICA

Methods for separation of convolutively mixed signals in frequency domain in-

volves computations with complex valued signals. That’s why FastICA is not appropri-

ate with the version for time domain signals. The FastICA algorithm which is extended

to complex valued signals in [19], is described in this section.

It is assumed that the number of independent component variables is the same

as the observed linear mixtures, that is n=m. The mixing matrix A is of full rank and

it may be complex as well. The preprocessing steps, centering and whitening have to

be applied.

A complex random variable may be represented as y = u+iv where u and v are

real-valued random variables. The density of y is f(y) = f(u,v). The expectation of y

is E{y} = E{u} + i E{v}. Two complex random variables y1 and y2 are uncorrelated

if E{y1y
∗
2} = E{y1} E{y∗2}, where y∗ designates the complex conjugate of y. The

covariance matrix of a zero-mean complex random vector y = (y1,...,yn) is

E{yyH} =




C11 · · · C1n

...
. . .

...

Cn1 · · · Cnn




(4.3)
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where Cjk = E{yjy
∗
k} and yH stands for the Hermitian of y, that is, y transposed

and conjugated. In this model, all source signals sj are zero-mean and they have unit

variances and uncorrelated real and imaginary parts of equal variances. In general

these assumptions imply that sj must be strictly complex, that is, the imaginary part

of sj may not in general vanish.

The contrast function is chosen as,

JG(w) = E{G(|wHx|2)} (4.4)

where G : R+ ∪ {0} → R is a smooth even function, w is an n-dimensional complex

weight vector and E{|wHx|2} = 1. Finding the extrema of a contrast function is a well

defined problem only if the function is real, that’s why the contrast function operates

on absolute values rather than on complex values.

Maximizing the sum of n one-unit contrast functions, and taking into account

the constraint of decorrelation, the optimization problem becomes,

maximize
n∑

j=1

JG(wj) with respect to wj, j = 1, ..., n (4.5)

under the constraint E{(wH
k x)(wH

j x)∗} = δjk (4.6)

where δjk = 1 for j = k and δjk = 0 otherwise.

Robustness of the contrast function against outliers is a very important issue.

The more slowly G grows as its argument increases, the more robust is the estimator.

The choice of G determines the robustness of the estimator. Three different functions

are proposed in [19],

G1(y) =
√

a1 + y, g1(y) =
1

2
√

a1 + y
(4.7)

G2(y) = log(a2 + y), g2(y) =
1

a2 + y
(4.8)
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G3(y) =
1

2
y2, g3(y) = y (4.9)

where a1 and a2 are arbitrary constants which are chosen to be a1 ≈ 0.1 and a2 ≈ 0.1.

G1(y) and G2(y) give more robust estimators because they grow more slowly then

G3(y). When G3(y) is used as nonlinear function then the estimator uses kurtosis as a

measure of non-gaussianity.

The fixed-point algorithm for one unit is

w+ = E{x(wHx)∗g(|wHx|2)} − E{g(|wHx|2g′(|wHx|2))}w (4.10)

wnew =
w+

‖w‖ (4.11)

This one unit estimation could be used to estimate all independent components so the

whole transformation matrix could be estimated, s = WHx. Symmetric orthogonal-

ization is used to decorrelate the separated signals.

4.3. Solving Scaling Ambiguity

The ambiguities of ICA arises as an important problem with this method. Since

ICA is applied in each frequency band separately, the resulting demixing matrices have

different scalings and permutations. For the scaling problem there are two solutions,
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4.3.1. Method 1

In this method, which is described in [7], the decomposition of spectrograms is

performed by

v̂fo(ts; i) = W(fo)
−1EiW(fo)X(fo, ts) = W(fo)

−1




0

.

.

ŝi(fo, ts)

.

.

0




(4.12)

where ŝi(fo, ts) denotes the i’th element (independent component), in the fo frequency

band and at time ts. Ei is a diagonal matrix with the i’th diagonal element is one and

the rest is zero.

Intuitively, applying W(fo) and W(fo)
−1 together, the resulting signal, v̂fo(ts; i),

don’t have a scaling ambiguity. The elements of the v̂fo(ts; i) are the responses of,

• i’th independent component in the 1’st sensor

• i’th independent component in the 2’nd sensor

• ..

• i’th independent component in the n’th sensor

4.3.2. Method 2

The second method is motivated by Minimum Distortion Principle (MDP) [26].

The goal in this method is to obtain a filtered version of a source sΠ(i)(t) at each output

yi(t) =
∑

l

αi(l)sΠ(i)(t− l) (4.13)
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where αi(l) is a filter and Π(i) is permutation which represent the scaling and permu-

tation ambiguity of ICA respectively. For the scaling ambiguity it is desired to have

a delayed version of source signals, not a filtered version. However it is not possible

with ICA algorithm unless the source signals si(t) are white, which is not the case for

speech signals [9]. That’s why the filter representing scaling is chosen as

αi(l) = hii(l) (4.14)

by using the MDP [26].

Intuitively, since the impulse responses of the sensors, hi(t) are unknown, there

is no possible way to have more information about source signals, the top goal should

the responses of source signals on sensors.

By using (4.14), in frequency domain it can be written,

Λ(f)W(f)H(f) = diag[H(f)] (4.15)

where Λ(f) is a diagonal matrix that should satisfy (4.15). When ICA is successfully

solved, there should be another diagonal matrix D(f) that satisfies W(f)H(f) = D(f).

So H(f) can be estimated by H(f) = W−1(f)D(f). By replacing this in the righthand

side of (4.15), we get

Λ(f)W(f)H(f) = diag[W−1(f)D(f)]

= diag[W−1(f)]D(f)

= diag[W−1(f)]W(f)H(f)

Hence we have,

Λ(f) = diag[W−1(f)] (4.16)
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Therefore the scaling ambiguity is solved by,

W(f) ← diag[W−1(f)]W(f) (4.17)

4.4. Solving Permutation Ambiguity

Permutation ambiguity is the most important problem when dealing with ICA in

frequency domain. Basically the permutation problem is to align each frequency bin so

that a separated signal in the time-domain contains frequency components of the same

source signal. Direction of Arrival (DOA) approach and interfrequency correlations

of signals approach are two basic approaches for this problem. There are also some

methods that use both approaches to have a more robust and precise technique [9].

4.4.1. Direction of Arrival (DOA) Approach

DOA approach is motivated by conventional beamforming [14]. In this method,

the directions of source signals are estimated and permutations are aligned based on

them [9],[10]. Each row of the demixing matrix W(f) forms spatial nulls in the direc-

tions of jammer signals and extracts a target signal in another direction. When the

directions are estimated, Θ(f) = [θ1(f), ..., θN(f)]T of target signals extracted by every

row of W(f), the permutation matrix P(f) can be obtained by sorting the angle of

directions or clustering Θ(f). There are two ways to calculate the direction angle.

4.4.2. Calculating Directivity Patterns

In this method, directions of source signals are found by plotting the directiv-

ity pattern of each output Yi(f, t). In conventional beamforming [14], the frequency

response of an impulse response hjk(t) is approximated as

Hjk(f) = ej2πfc−1dj cos θk (4.18)
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where c is the propagation velocity, dj is the position of sensor xj and θk is the direction

of source sk (the direction orthogonal to the array is 90◦). The assumptions for that

approximation are that there is no reverberation and the signal is a plane wavefront

just as in beamforming theory [15],[14]. The frequency response of separation system

impulse response can be written as

U(f) = W(f)H(f) (4.19)

Uik(f) =
M∑

j=1

Wij(f)Hjk(f) (4.20)

=
M∑

j=1

Wij(f)ej2πfc−1dj cos θk (4.21)

If we use θk as a variable θ, the formula becomes,

Ui(f, θ) =
M∑

j=1

Wij(f)ej2πfc−1dj cos θ (4.22)

which changes according to the direction θ for fixed frequency band. This is called a

directivity pattern.
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Figure 4.3. Directivity Pattern Ui(f, θ) for f=3320 Hz with one source approaching

from −25o
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4.4.3. Calculating Angle of Arrival directly

The direct calculation of angle of arrival is motivated by the approximation of

frequency response of an impulse response (4.18).

From (2.23), it can easily be written that H = W−1P−1Λ−1 which means the

mixing matrix H(f) can be estimated up to scaling and permutation ambiguities that

is H(f) columns can be permuted arbitrarily and have arbitrary scaling factors. So

an element Hjk(f) of the matrix H(f) may have an arbitrary amplitude which also

does not match with the approximation of the mixing system (4.18). That’s why the

approximation (4.18) should be modified with attenuation Ajk (real-valued) and phase

modulation ejϕk ,

Hjk(f) = Ajke
jϕkej2πfc−1dj cos θk (4.23)

By calculating the ratio between two elements Hjk(f) and Hj′k(f) which are the ele-

ments of the same column of H(f),

Hjk

Hj′k
=

[W−1P−1Λ−1]jk
[W−1P−1Λ−1]j′k

=
[W−1]jΠ(k)

[W−1]j′Π(k)

(4.24)

From using (4.23) and (4.24) we have,

[W−1]jΠ(k)

[W−1]j′Π(k)

=
Ajk

Aj′ke
j2πfc−1(dj−dj′ ) cos θk

(4.25)

Then for estimating θk arranging with taking the argument of (4.25) leads to,

θk = arccos
arg(

[W−1]jΠ(k)

[W−1]j′Π(k)
)

2πfc−1(dj − dj′)
(4.26)

By calculating θk for all k = 1, ..., N , we can estimate the directions of all source signals

and sort them in the way we want to solve permutation problem. This method offers

an advantage in computational cost.
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4.4.4. The Limitations of DOA approach

The basic limitations in finding permutations with directivity patterns are,

• Direction of arrival can not be well estimated at some frequencies. At high

frequencies, spatial aliasing occurs and at low frequencies the phase difference

caused by sensor spacing is too small. These are also the basic limitations in

beamforming applications.

• When there are more than two sources/sensors, it is difficult to estimate the

direction of arrivals.

• For online methods, calculation of null directions from directivity patterns is time

consuming.

When the angle of arrival is directly calculated without using directivity pattern

but (4.26), sometimes the absolute value of the input of arccos becomes larger than

1, which means θk becomes complex and no directions can be estimated. When this

happens the formula could be used for another pair j and j′. But for 2× 2 case, there

is no other possibility to estimate when θk becomes complex.

4.5. Correlation Approach

This approach is motivated by the non-stationary property of the speech signals.

Based on this property, we may assume that components at different frequencies from

the same source signals are under the influence of a similar modulation in amplitude

[7]. That is, writing the estimated independent component ŝi(w, ts) with amplitude

and phase,

ŝi(f, ts) = ai(f, ts)e
jφi(f,ts) (4.27)

The amplitude, ai(f, ts), changes in time because of non-stationarity. Since ŝi(f, ts)

and ŝj(f, ts) are independent from each other, the correlation of amplitudes which is

defined as,
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corr(ai(f, ts), aj(f, ts)) =
1

T

T∑

s=1

ai(f, ts)aj(f, ts) (4.28)

− 1

T

T∑

s=1

ai(f, ts)
1

T

T∑

s=1

aj(f, ts)

= 0, i 6= j

should vanish if T is sufficiently large. Also the correlation between different frequency

components form different source signals should vanish.

corr(ai(f, ts), aj(f
′, ts)) = 0, i 6= j, f 6= f ′ (4.29)

But the correlation between different frequency components from the same source signal

should not equal to zero.

corr(ai(f, ts), ai(f
′, ts)) 6= 0 (4.30)

First step in correlation approach is applying a moving average operator, a smooth-

ing operator, on the envelopes of the separated signals ŝi(f, ts). The moving average

operator is defined as,

εŝi(f, ts) =
1

2M + 1

ts+M∑

t′s=ts−M

|ŝi(f, t
′
s)| (4.31)

where M parameter is the filter length. This operator is basically a mean filter which

is usually used as a preprocessing before calculation of correlations.

The inner product and norm are defined as,

εŝi(f) · εŝj(f
′) =

∑

ts

εŝi(f, ts)εŝj(f
′, ts), (4.32)

‖εŝi(f)‖ =
√

εŝi(f) · εŝi(f) (4.33)
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Similarity of two envelopes is calculated with a similarity measure between i’th inde-

pendent components in f frequency band and and j’th independent component in f ′

frequency band,

sim(εŝi(f), εŝj(f
′)) =

∑

i 6=j

εŝi(f) · εŝj(f
′)

‖εŝi(f)‖‖εŝj(f ′)‖ (4.34)

Shortly, we align permutations based on interfrequency correlations of the signals.

There are two versions of correlation approach.

4.5.1. Neighboring Correlations

This method decides the permutation, Πf by maximizing the sum of the similar-

ities between neighboring frequencies within a distance δ. There are some versions of

this algorithm, in [9], the permutation is calculated with the formula,

Πf = argmaxΠ

∑

|g−f |≤δ

N∑

i=1

sim(εŝΠf (i)(f), εŝΠg(i)(g)) (4.35)

where Πf and Πg are permutations at frequency bin f and g respectively. This algo-

rithm works with all neighboring frequencies, which may cause misalignments in the

permutation. In [9], this kind of correlation approach is used after DOA estimation

which is used for pre-sorting of frequencies. Another approach may be,

Πf = argmaxΠ

∑

(f−g)≤δ

N∑

i=1

sim(εŝΠf (i)(f), εŝΠg(i)(g)), f > g (4.36)

which uses only past frequencies. When the algorithm works from lower frequencies

to higher ones, the past frequencies would be sorted when dealing with a frequency

bin f . That’s why, this kind of correlation approach would be more successful without

pre-sorting. Also by changing the distance parameter, δ to all past frequencies, the

algorithm may become more robust.
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4.5.2. Correlations between far frequencies based on nonstationarity

This method assumes high correlations of envelopes even between frequencies

that are not close neighbors which comes from the fact that each frequency component

of a source signal has a similar modulation in amplitude.

The steps in this method,

• Sort frequency bins in order of weakness of similarity between estimated inde-

pendent components in a frequency bin ,f . The similarity measure in (4.34) can

be modified as,

sim(f) =
∑

i6=j

εŝf (i) · εŝf (j)

‖εŝf (i)‖‖εŝf (j)‖ (4.37)

so that it calculates the similarity between independent components in one fre-

quency bin, f .

sim(f1) ≤ sim(f2) ≤ ... ≤ sim(fN) (4.38)

• For frequency bin f1, the signals ŝf1(i) are assigned to ŷf1(i) with the same order,

ŷf1(i) = ŝf1(i), i = 1, ..., n (4.39)

• After assigning the first frequency bin, for each fk frequency bin, find an appro-

priate permutation ,Πfk
(i), which maximizes the similarity between the envelope

of fk and the sum of the envelopes from f1 through fk−1, that is,

argmaxΠ

n∑

i=1

sim


εŝfk

(Πfk
(i)),

k−1∑

j=1

εŷfj
(i)


 (4.40)

which searches all possible permutations that maximizes the similarity.
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• When the correct permutation is found, assign it to ŷfk
(i),

ŷfk
(i) = ŝfk,Πfk

(i), i = 1, ..., n (4.41)

• Apply the algorithm for all frequency bins from which has least similar indepen-

dent components to the highest one.
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Figure 4.4. The spectrogram of two different frequency bins from same source signal

f1 = 781 and f2 = 3437

4.5.3. Limitations of Correlation Approach

In both versions of correlations approach, the algorithms work in a narrow band

frequency range but when there is a misalignment in a certain frequency range, it may

lead to a complete misalignment of frequencies since the algorithms are using the sim-

ilarity of independent components between frequency bins. So with a few unseparated

frequency bins which are failed by ICA, the correlation may fail easily, which makes

the ICA performance extremely important.

Also the assumption that each frequency component of a source signal has a

similar modulation in amplitude which leads to have high correlation in between is not

satisfied for all pairs of frequencies which is shown in figure 4.4.
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4.5.4. A Hybrid Method that uses both DOA and interfrequency correla-

tions approaches

Neither DOA nor correlation approaches may not form a robust system alone to

solve the permutation problem. In [9], a new method is presented which uses both of

the approaches in a hybrid way.

The DOA approach is robust in a way that a misalignment in a certain frequency

does not affect the rest of the frequency bins. But it may not be precise since the

approximations (4.18) and (4.23) are based on certain assumptions like there is no

reverberation which is our case.

The success of correlations approach is based on successfully estimated indepen-

dent components so this approach can be precise as long as the signals are well separated

by ICA. But not robust since a misalignment at a frequency may cause consecutive

misalignments.

This method is using the correlations in two ways, neighboring correlations and

Harmonic Structure of Signals.

4.5.4.1. Harmonic Structure of Signals. This method is motivated by the second method

in correlations approach [7]. The basic assumption of this method may not be satis-

fied for all frequency bins but there are strong correlations (similarities) between the

envelopes of a fundamental frequency f and its harmonics 2f ,3f and so forth. The

similarity between frequency f and its harmonics is calculated as,

argmaxΠ

∑

g=setOfHarmonics(f)

N∑

i=1

sim
(
εŝΠ(i)(f), εŝΠg(i)(g)

)
(4.42)

where setOfHarmonics(f) is a procedure which produces the harmonics of f .

By using DOA, neighboring correlations and harmonic structure, this method
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aligns the permutations in 4 steps:

1. Fix the permutations with DOA approach at some frequencies where the confi-

dence is sufficiently high. The confidence measure is that the directions Θs(f) do

not differ greatly from the mean directions Θs,

|Θs(f)−Θs| < thθ (4.43)

where thθ is the threshold value.

2. Align the permutations by using neighboring correlations without changing the

permutations fixed by DOA approach, if the similarity between them is higher

than a threshold value, thcor

3. Apply the harmonics method to remaining frequencies which are not fixed either

by DOA or by neighboring correlations, align the permutations which have a

similarity measure higher than a threshold value, thha.

4. Apply neighboring correlations again to remaining frequencies that are not fixed

at any step and align them without checking with a threshold value.
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5. RESULTS

The experiments are performed to separate speech signals in reverberant condi-

tions. All the experiments are done for 2 × 2 case. The source signals belong to one

male and one female voice which are illustrated in figure 5.1. In the first section the

simulation environment such as simulation room is described, then the beamforming

results are demonstrated for both conventional and adaptive approaches. After that

the results of the time domain ICA method Generic SOS algorithm is shown and in the

end frequency domain ICA with different approaches to solve permutation and scaling

is given.
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(a) Sentence: ”Bach çok iyi bir müzisyendir”
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Figure 5.1. Source signals (a) Male voice (b) Female voice
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5.1. Simulation Environment

We simulated a room with dimensions 4-4-5 meters which is shown in figure

(5.1). The impulse responses are generated by using the image method [16]. In the

simulation there are 9 sensors which are uniformly spaced with a sensor spacing of 4cm,

the source and the sensor locations are given in table 5.1 The sources are at 27o and

−27o according to the perpendicular vector to the sensor array. Figure 5.2 shows the

simulation room for beamforming experiments.
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Figure 5.2. Simulation Room for Beamforming

For ICA experiments, the fourth and the fifth sensors are chosen for the 2x2 case

which is shown in the figure 5.3. in both figure 5.2 and 5.3 the ”∗” represents the

source signal position and the ”◦” represents the sensor positions.

The speech signals are recorded at 16kHz and each of them is 4 seconds long.

The length of the windows in overlap-add method is chosen as 25ms which leads to

400 samples in 16kHz sampling rate. The length of impulse responses is chosen as

65ms which leads to 1024 samples, they are shown in figure 5.4. The fft size used in

calculations is 2048 points.

For the experiments where there is no reverberation but delay, the first peak



46

Table 5.1. Locations of sensors and sources in the simulation room

x [mt] y [mt] z [mt]

Source 1 1 3.5 2

Source 2 4 3.5 2

x [mt] y [mt] z [mt]

Sensor 1 2.34 0.5 2

Sensor 2 2.38 0.5 2

Sensor 3 2.42 0.5 2

Sensor 4 2.46 0.5 2

Sensor 5 2.5 0.5 2

Sensor 6 2.54 0.5 2

Sensor 7 2.58 0.5 2

Sensor 8 2.62 0.5 2

Sensor 9 2.66 0.5 2

sample of the impulse responses are taken and other values are suppressed to be zero.

5.2. Generating Mixed Signals

The mixture signals are generated by two different methods while using simulated

impulse responses.

5.2.1. Mixing in Time Domain

This method is simply convolving the speech signals si(t) and the impulse re-

sponses hij(t) which is shown in (2.37). Equation (2.37) simplifies to,




x1(t)

x2(t)


 =




h11(t) h12(t)

h21(t) h22(t)


 ∗




s1(t)

s2(t)


 (5.1)

x1(t) = h11(t) ∗ s1(t) + h12(t) ∗ s2(t)

x1(t) = h21(t) ∗ s1(t) + h22(t) ∗ s2(t)
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Figure 5.3. Simulation Room for ICA for 2x2 case

5.2.2. Mixing in Frequency Domain

In this method, the source signals and the impulse responses are transformed into

fourier domain by STFT. The resulting data which contains time-frequency informa-

tion of the signals is multiplied and added with the fourier transforms of the impulse

responses,

s1(t), s2(t) → STFT → S1(f, t), S2(f, t)

h11(t), h12(t), h21(t), h22(t) → STFT → H11(f, t), H12(f, t), H21(f, t), H22(f, t)




X1(f, t)

X2(f, t)


 =




H11(f, t) H12(f, t)

H21(f, t) H22(f, t)







S1(f, t)

S2(f, t)


 (5.2)

The X1(f, t) and X2(f, t) are the STFT of the mixed signals which are obtained in

frequency domain.

5.2.3. Difference between two methods

In both methods, we obtain the time-frequency signals X1(f, t) and X2(f, t). In

the first one, we first convolve the signals with impulse responses then take the STFT,
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Figure 5.4. Impulse Responses h11, h12, h21 and h22

in the second one, we first take the STFT then multiply the impulse responses and

signal in frequency domain which also leads to mixed time-frequency signals.

Unfortunately these two methods lead to different signals. The main reason

is that the time domain convolution is using circular convolution and the frequency

domain method is using linear convolution. In frequency domain ICA methodology, it

is assumed that there is linear convolution which causes an ambiguity for real data.

The convolution in time domain is the method that totally describes a real room

simulation. The second method is not a true mixing method for real life conditions

but it is applied in order to examine the ambiguity that occurs because of circular

convolution.

5.3. Beamforming Results

For both approaches of beamforming, the results are shown by plotting the am-

biguity functions of separated signals and the sum of frequency energies against the

direction of arrival angle which has 5o resolution.
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5.3.1. Conventional Beamforming Results

No reverb Case for conventional beamforming
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Figure 5.5. Ambiguity function of ŝ1 and ŝ2 with no reverberation [dB]

When there is no reverberation in the room Conventional Beamforming is able

to separate these two signals coming from different locations at around 1kHz range, as

it can be seen that there are two maximum energy directions at that range. Due to

angular resolution, in the low frequencies below that range, there is no way to separate

them because no direction can be estimated.

From figure 5.6.a and 5.6.b, it can be seen that, there are two peaks in the plot

which corresponds to the locations of sources. Logarithmic sum of frequency energies

clarifies the peaks.

Reverb Case for conventional beamforming

The conventional beamforming fails to separate signals in most of the frequency

bands in a reverberant condition. A weak separation can be observed around 900Hz,

1100Hz and 1400Hz.
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Figure 5.6. Sum of energies at each frequency bin according to DOA (a)in [Hz] and

(b) in [dB]
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Figure 5.7. Ambiguity function of ŝ1 and ŝ2 with reverberation [dB]

As it is seen, there are two clear peaks in figures 5.8.a and 5.8.b but the estimated

angle is totally wrong for one of the sources.

5.3.2. Adaptive Beamforming Results

No reverb Case for adaptive beamforming

As it can be seen from the figure, there are two clear directions in −25o and 25o
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Figure 5.8. Sum of energies at each frequency bin (a)in [Hz] and (b) in [dB]
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Figure 5.9. Ambiguity function of ŝ1 and ŝ2 with no reverberation [dB]

which are true angles. But in lower frequencies, below 300 Hz, the separation fails due

to the angular resolution.

It can clearly be seen that there are two peaks in the figure 5.10.a which represents

the direction of arrival angles for both sources. But although from the sum of logarithms

the directions can still be estimated in figure 5.10.b, they are less clear.

Reverb Case for adaptive beamforming
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Figure 5.10. Sum of energies at each frequency bin (a)in [Hz] and (b) in [dB]
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Figure 5.11. Ambiguity function of ŝ1 and ŝ2 with no reverberation [dB]

From the figure, it can be observed that at some frequencies at around 300 Hz,

500 Hz and 750 Hz, there is more energy for the angles −25o and 25o. The results are

not clear but well enough to estimate the directions.

It can be seen that one of the directions is truly estimated and other direction

miscalculated with around 5o or 10o. Summing logarithmic energies also can not clearly

estimate the directions actually it is worse then previous case.
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Figure 5.12. Sum of energies at each frequency bin (a)in [Hz] and (b) in [dB]

5.4. ICA Results

5.4.1. Time Domain Method Results (Generic SOS Algorithm)

For the generic SOS algorithm in [12] and [13], it is a parametric algorithm which

has 9 parameters to tune. The optimal parameters could not be found for this method

therefore the results are not successful.

5.4.2. Frequency Domain ICA Results

Although FastICA algorithm is a robust algorithm for separation even in complex

domain, sometimes due to data or the bad mixing matrix it may fail to separate signals.

A performance measure is needed to observe the success of separation.

The performance of the algorithm is checked at each frequency bin by calculating

the similarity of separated time-frequency signals. If the similarity (4.34) between

them is over a predetermined threshold value, then it is decided that ICA failed to

separate signals at that frequency bin. The threshold value is chosen as the mean of

the calculated similarities.

Sometimes ICA algorithm finds some local minima which is not the desired min-
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imum point that leads to maximum nongaussianity. In that case re-applying ICA

algorithm improves the performance. If the stopping point is a global minimum, then

re-applying the ICA algorithm won’t change the result but if it is a local minimum,

then the ICA algorithm may pass this minimum and find the global minimum point.

Within the performance check if it is decided that ICA failed, then it is re-applied from

the ending point of the first try.

The separation performance for the mixtures generated in time domain with

convolution is summarized in table 5.2. The results are given for the environments

with no reverberation and vice versa.

Table 5.2. ICA Performance of mixtures generated in time domain

# of ICA Fails # of ICA Success Performance

No Reverb Case 857 1191 %58.1 success

Reverb Case 1285 763 %37.3 success

For the mixtures generated in frequency domain with multiplication, the separa-

tion performance is given in table 5.3.

Table 5.3. ICA Performance with mixtures generated in frequency domain

# of ICA Fails # of ICA Success Performance

No Reverb Case 14 2034 %99.3 success

Reverb Case 24 2024 %98.8 success

By applying the FastICA algorithm second time for the failed frequency bins, the

separation performance is improved which are shown in table 5.4 and 5.5.

Table 5.4. Improved ICA Performance of mixtures generated in time domain

# of ICA Fails # of ICA Success Performance

No Reverb Case 843 1205 %58.83 success

Reverb Case 1263 785 %38.33 success
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Table 5.5. Improved ICA Performance with mixtures generated in frequency domain

# of ICA Fails # of ICA Success Performance

No Reverb Case 2 2046 %99.9 success

Reverb Case 0 2048 %100 success

For mixing type 1, the separation performance is not satisfactory. For no reverber-

ation case, the resulting time domain signals are satisfying in the means of separation

of sources. But for reverberation case, it totally fails to separate independent sources.

On the other hand, the separation performance of the mixtures generated in frequency

domain is quite high in both reverb an non-reverb cases. And it is even improved with

re-applying ICA to the failed frequency bins

This case is illustrated for frequency of 195Hz for mixtures generated in frequency

domain where there is reverberation. The first figure shows the time-frequency repre-

sentation of original source signals S1(f, t) and S2(f, t) respectively, for frequency 195

Hz.
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Figure 5.13. Original time-frequency signals S1(f, t) and S2(f, t) where f = 195Hz

As it is seen from figure 5.14.a, the separation is failed for that frequency bin. It

can be seen from the fact that they are pretty much similar to each other or they are

not similar with the original signals. When ICA is applied for the second time which
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is illustrated in figure 5.14.b, the signals are well separated which can also be check by

their correlation with the original signals.
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Figure 5.14. Separated signals (a) For ICA applied for once (b) For ICA applied for

second time

5.4.3. Permutation Alignment with DOA approach

The sensor spacing is 4cm leads to 4.25kHz frequency range according to (3.7),

after which there becomes spatial aliasing. This means that the permutations can be

estimated by DOA approach up to 4.25kHz frequency range. For this reason in [9], the

sampling rate of the signals is 8kHz. But there is a problem with this sampling rate

that is the resolution of samples to represent the delay is not enough. For example,

assume that there is a source with arrival angle of 30o, from (3.2) the actual delay

occurred between sensors would be 5.810−5 seconds. In order to observe this delay in

the sensors, this delay should be represented with at least one sample. But for 8kHz

sampling rate, this delay is represented with 5.810−5 × 8kHz = 0.4706 samples which

is not enough. For sampling rate of 16kHz this problem also arises for some angles.

In our experiments, the delay between sensors is 1 sample.

5.4.3.1. True Order Calculation. In our method, the exact permutation is calculated

by comparing the similarities between separated signals and the original signals in order

to find the right permutation. The similarity measure (4.34) is used in calculations.

For frequency bins in which the ICA algorithm failed to separate signals, the correct
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order could not be estimated at that frequency bin. When the signals are not separated

they usually look similar to each other and carry the frequency components of both

sources, that’s why there is no meaning to find a permutation for that frequency bin.

The correct order is calculated for all the cases that are ”no reverb” and ”reverb” cases

with mixing type 1 and type 2.

There are two approaches to estimate the arrival angles of the sources as we it is

mentioned in sections 4.4.2 and 4.4.3.

The directivity patterns are calculated for each frequency bin, and the minima of

that pattern gives the direction of arrival. When the angles are estimated, the separated

frequency components are sorted in increasing order. This method is motivated by

conventional beamforming so is has the same limitations with this approach which are

angular resolution and spatial aliasing that are mentioned in sections 3.3.1 and 3.3.2.

That’s why the directions can be estimated in a limited frequency band. The upper

boundary of this method is determined by spatial resolution and the lower boundary

is determined by angular resolution.

Figure 5.15 shows the directivity patterns for frequency bins 54Hz, 3.3kHz and

6.25kHz. As it can be seen from figure 5.15.a, the directivity patterns are monotone

increasing or decreasing functions so the angles could not be estimated from these

plots. Without knowing arrival angles, these plots could still be used to estimate

whether angle is smaller or higher. For example, the order of the components should

be changed at 54Hz according to figure 5.15.a. Around 3.5kHz the directivity patterns

have clear minima, so that the angles could be estimated and sorted. Figure 5.15.c

shows the directivity pattern of 6250Hz which is beyond spatial resolution that’s why

spatial aliasing occurs.

The true orders are used to measure the performance of DOA approach by using

directivity patterns which are shown in tables 5.6 and 5.7. The performance is measured

up to 512’th frequency bin which leads to 4 kHz. Although DOA approach is weak in

low frequencies, the estimated orders are well enough for separation.
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Figure 5.15. Directivity patterns for frequencies (a) 54 Hz (b) 3320 Hz (c) 6250 Hz
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Table 5.6. DOA Performance with mixtures type 1 and using directivity patterns

# of DOA Fails # of DOA Success Performance

No Reverb Case 2 510 %99.9 success

Reverb Case 164 348 %67.9 success

Table 5.7. DOA Performance with mixtures type 2 and using directivity patterns

# of DOA Fails # of DOA Success Performance

No Reverb Case 1 511 %99.9 success

Reverb Case 185 327 %63.86 success

Confidence of estimated arrival angles can be measured by calculating the differ-

ence of the angle with the averaged angles [9]. If this difference smaller than a threshold

value such as then this angle is confident.

The problem with this confidence method is that DOA estimation finds right

directions in a relatively small frequency band. When the estimation of angles is wrong

for the majority of frequencies then the mean of these angles won’t give a meaningful

measure which means some frequencies would be treated as not confident although

they are. Table 5.8 shows the confidence measure of frequencies for mixing method

type 2.

Table 5.8. Confidence Measure for mixture type 2

Confident Not Confident Performance

No Reverb Case 251 261 %50.9 confident

Reverb Case 275 237 %53.7 confident

The method of direct calculation of arrival angle with formula (4.26) has a major

drawback that sometimes the inside of arccos becomes out of range [-1,1] which leads a

complex angle estimation. The reason for this wrong estimation would be the unprecise

delay estimation due to low sampling frequency. Increasing sampling rate may lead

better solutions. Also miscalculation of demixing matrix by ICA prevent this method

to calculate direction of arrival angle. Table 5.9 and 5.10 shows the number of complex
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and real angles calculated with this method.

Table 5.9. Results for direct calculation of angle with mixture type 1

# of complex angles # of real angles

No Reverb Case 145 377

Reverb Case 128 384

Table 5.10. Results for direct calculation of angle with mixture type 2

# of complex angles # of real angles

No Reverb Case 140 382

Reverb Case 123 389

There is an alternative way to use this method. Actually there is no need to find

the angles. The argument on the upper side of the formula (4.26) is enough to sort the

separated components. Since arccos is a monotone decreasing function,

arg(A) > arg(B) −→ arccos(arg(A)) > arccos(arg(B)) (5.3)

So by sorting the arguments arg(
[W−1]jΠ(k)

[W−1]j′Π(k)
), the aim of ordering the separated compo-

nents can still be accomplished. The performance of the modified algorithm is shown

in tables 5.11 and 5.12.

Table 5.11. DOA Performance with mixtures type 1 with direct calculation of angle

# of DOA Fails # of DOA Success Performance

No Reverb Case 2 510 %99.9 success

Reverb Case 163 349 %68.1 success

Table 5.12. DOA Performance with mixtures type 2 with direct calculation of angle

# of DOA Fails # of DOA Success Performance

No Reverb Case 1 511 %99.9 success

Reverb Case 185 327 %63.8 success
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5.4.4. Permutation Alignment with correlations approach

Correlation approach, especially neighboring correlations method is very effective

when ICA algorithm successfully separates the mixed signals at each frequency bin or

at least at a big majority of frequency bins. It does not have an upper bound like

DOA approach so all frequency bins could be considered with correlation method. The

major drawback of this algorithm is that a single error in a narrow frequency band

may lead to complete misalignment of permutations.

The separation of ICA algorithm is pretty much better when the mixing type

2 is used to generate mixed signals. That’s why the correlation approach leads to a

great success at almost all frequency bins. But due to less successful separation of

mixtures generated with mixing type 1, the ordering of the correlation algorithm is not

so successful. Table 5.13 and 5.14 shows the performance correlation approach with

both mixing types.

Table 5.13. Correlation Performance with mixtures type 1 with Neighboring

Correlations

# of Correlation Fails # of Correlation Success Performance

No Reverb Case 1317 731 %35.7 success

Reverb Case 983 1065 %52 success

Table 5.14. Correlation Performance with mixtures type 2 with Neighboring

Correlations

# of Correlation Fails # of Correlation Success Performance

No Reverb Case 1 2047 %99.9 success

Reverb Case 1 2047 %99.9 success

For the reverberant mixtures, the resulting time domain signals are shown in

figure 5.16.a and 5.16.b. As it is seen from figures mixing type 2 leads to a high

performance in separating signals, however the performance with mixing type 1 is low.
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Figure 5.16. The resulting time domain signals (a) For mixing type 1 (b) For mixing

type 2
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6. CONCLUSIONS

In this thesis, we investigated methods for audio source separation in reverberant

environments. Both time domain and frequency domain algorithms are implemented

but special care is given to frequency domain methods where the mixing is instanta-

neous at each frequency bin.

FastICA is a fast and robust algorithm for separation of speech signals. One of

the advantages of this algorithm is that there is no tuning parameters for the update

rules. The performance of FastICA is much better when the mixtures are generated in

frequency domain which proves that it is a robust algorithm for basic ICA model even

with the complex numbers. Unfortunately for the first type of mixing, the performance

of the algorithm dramatically decreases. An important conclusion may come out the

difference of these performances. The theory second mixing method actually forms

the basis for the frequency domain separation. Ideally for each window we assume

that the window is convolved with impulse response so that multiplying their fourier

transforms in frequency domain have to lead to same result. However the first mixing

method totally describes the real environment conditions. As a result, we may conclude

that the segmentation and STFT of source signals constitute some ambiguity that may

prevent frequency domain ICA to separate independent components.

Frequency domain ICA has a very challenging problem of permutation which is

one of the ambiguities of ICA. There are two basic approaches for solving permutations

namely Direction of Arrival and correlations approach. DOA approach is motivated

by conventional beamforming theory. Thus the limitations of angular resolution and

spatial resolution are also bounding the range of frequency band that DOA could be

estimated. The arrival angles are calculated either by directivity patterns or by directly

calculating the angle with (4.26). By observing directivity patterns, one can find the

frequency band that angles can be measured confidently. Unfortunately this confident

frequency band is narrow eve in 16kHz sampling rate. A solution to increase size of this

band from upper bound is decreasing the spacing of sensors but this leads to increase
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the angular resolution so that the lower bound is also increased.

Beyond these direct calculation of arrival angle has another problem that some-

times the calculated angle becomes complex which means that no angle could be es-

timated. For 2x2 case, actually one does not need to calculate the angles to solve

permutation. True order can still be achieved by sorting the argument arg(
[W−1]jΠ(k)

[W−1]j′Π(k)
)

in (4.26)

It may be concluded that DOA approach is a limited approach for having a narrow

frequency band that the angles confidently precalculated. However for 2x2 case, if the

permutations are aligned at each frequency bin by using the angles calculated which are

not necessarily confident, the performance is quite good by both directivity patterns

and direct calculation of angle methods. But if number sources is more than two,

estimating angles from directivity patterns becomes more challenging. Also ordering

by angles that are not confident may not lead to right solution anymore.

Correlations approach is another important approach for solving permutations.

Basically it measures the similarity of separated time frequency signals for each fre-

quency bin. Neighboring correlations is a quite robust method when ICA problem is

successfully solved for a great majority of frequency bins. This method has a high

performance for mixing in frequency domain, which is because FastICA performance is

also high. The major drawback of this algorithm is that an error in a narrow frequency

band may lead to complete misalignment of permutations. On the other hand, there is

another correlation method that assumes separated signals from far frequency bins may

also have high correlation due to the temporal structure of signals. This assumption

is quite optimistic that from figure 4.4, it can be seen that different time frequency

signals from far frequency bins but same source signal have a little similarity between

each other.

We also implemented conventional and adaptive beamforming (LCMV) methods

which are using source localization in order to separate sources. In the experiments

where there is no reverberation especially adaptive beamforming has a quite high per-
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formance. However for reverberant environments, the performance of both algorithms

decreases.

We propose another method for future research, combining ICA and beamform-

ing. In this case beamforming is a preprocessing step for ICA. This method has an

important advantage that the number of sensors does not depend on number of sources,

thus a relatively high number of sensors can be used for increasing source separation

performance. Further the beamforming approach can be used to determine the number

of sources. Then each source detected in the beamforming method, is given to ICA

tool as a preprocessed input data so that ICA would separate sources which are already

partially separated.



66

REFERENCES

1. Hyvarinen, A., J. Karhunen and E. Oja, Independent Component Analysis, John

Wiley and Sons, Toronto, 2001.

2. Hyvarinen, A., “Survey on Independent Component Analysis”, Technical Report,

Helsinki University of Technology, 1999.

3. Hyvarinen, A., “Independent Component Analysis, A Tutorial”,Technical Report,

Helsinki University of Technology, 1999.

4. Comon, P., “Independent component analysis, a new concept?” Signal Processing,

Vol.36, pp. 287-314, 1994.

5. Cardoso, J. F. and P. Comon ,“Independent Component Analysis,a survey of some

algebraic methods”, In Proceedings ISCAS’96, Vol. 2, pp. 93-96, 1996.

6. Capdevielle, V., Ch. Serviere and C. K. I. Williams ,“Blind Separation of wide band

sources inthe frequency domain”, In Proceedings ICASSP’95, Vol. 3, pp. 2080-2083,

May 1995.

7. Murata, N., S. Ikeda and A. Ziehe ,“An Approach to Blind Source Separation based

on Temporal Structure of Speech Signals”, Neurocomputing, Vol. 41, pp. 1-24, Oc-

tober 2001.

8. Anemuller, J. and B. Kolmeier, “Amplitude modulation decorrelation for convolu-

tive blind source separation”, Proceedings of ICA, pp. 215-220, June 2000.

9. Sawada, H., R. Mukai, S. Araki and S. Makino, “A Robust and Precise Method for

Solving the Permutation Problem of Frequency-Domain Blind Source Separation”,

IEEE transactions on speech and audio processing, Vol. 12, No. 5, September 2004.

10. Saruwatari, H., S. Kurita, K.Takeda, F. Itakura and K. Shikano “Blind Source



67

Separation based on Subband ICA and Beamforming”, Technical Report, Nagoya

University,Japan, 2003.

11. Buchner, H., R. Aichner and W. Kellermann, “Blind Source Separation for

convolutive mixtures exploiting nongaussianity, nonwhiteness and nonstation-

ary”,International Workshop on Acoustic Echo and Noise Control, IWAENC2003

Kyoto,Japan, September 2003.

12. Buchner, H., R. Aichner and W. Kellermann, “A Generalization of Blind Source

Separation ALgorithms for Convolutive Mixtures based on Second order Statis-

tics”,IEEE transactions on speech and audio processing Vol .13, No. 1, January

2005.

13. Buchner, H., R. Aichner, F. Yan and W. Kellermann, “Real Time Convolutive

Blind Source Separation based on Broadband approach”,Technical Report Univer-

sity of Erlangen-Nuremberg, 2005.

14. Van Veen, B. and K. Buckley, “Beamforming: A Versatile Approach to Spatial

Filtering”,IEEE ASSP Mag., pp. 2-24, 1988 .

15. Johnson, D. H., D. E. Dudgeon, Array Signal Proceesing:Concepts and Techniques,

Prentice Hall, Upper Saddle River, New Jersey, 1993.

16. Allen, J. and D. Berkley, “Image Method for efficiently simulating small-room

acoustics”,Technical Report, Bell Laboratuaries, 1978 .

17. Proakis, J. G., D. G. Manolakis, Digital Signal Processing, Prentice Hall, Upper

Saddle River, New Jersey, 1996.

18. Hyvarinen A., “The Fixed-Point algorithm and Maximum Likelihood Estima-

tion for Independent Component Analysis”,Technical Report, Helsinki University

of Technology, 1999.

19. Hyvarinen A., “A Fast Fixed-Point algorithm for Independent Component Analy-



68

sis of complex valued signals”,Technical Report, Helsinki University of Technology,

1999.

20. Amari S., “Natural Gradient works efficiently in learning”,Technical Report,

Saitama, Japan 1999 .

21. Bell, A. and T. Sejnowski ,“An information-maximizaton approach to blind sepa-

ration and blind deconvolution”, Neural Computation, Vol. 7, No. 6, pp. 1129-1159,

1995.

22. Cardoso, J. F. ,“Infomax and maximum likelihood for blind source separation.

based on information maximization.”, to appear in IEEE signal processing letters.

23. Attias, H. ,“Independent Factor Analysis”, Neural Computation.

24. Friedman, J. H., J. W. Tukey ,“A Projection Pursuit Algorithm for exploratory

daha analysis”, IEEE transactions for computers, c-23(9), pp. 881-890, 1974.

25. Friedman, J. H. ,“Exploratory projection pursuit”, J. of the American Statistical

Association, Vol. 82, pp. 249-266, 1987.

26. Matsuoka, K. and S. Nakashima, “Minimal Distortion Principle for blind source

separation”, Proceedings of ICA, pp. 722-727, December 2001.


